Wolfram
MATHEMATICA
<<< ÍÀÇÀÄ
1
(*1*) Graphics[ Table[{EdgeForm[Black],Hue[RandomReal[]], Disk[RandomReal[4, {2}], RandomReal[1]]}, {40}],Background->Black]
2
(*2*) Graphics[{EdgeForm[Blue], Table[Scale[Rotate[{RGBColor[0.75,1,1], Rectangle[]},125 r Degree],1-r/10],{r,0,10}]}]
3
Graphics[ Table[{EdgeForm[Opacity[.6]], Hue[(-11 + q + 10 r)/72], Disk[(8 - r) {Cos[2 Pi q/12], Sin[2 Pi q/12]}, (8 - r)/3]}, {r, 6}, {q, 12}]]
4
SphericalPlot3D[1 + Sin[17 t]/3, {t, 0, Pi},{u, 0, 5 Pi}, PlotStyle -> Directive[LightGray, Opacity[0.7], Specularity[White, 10]], {Mesh ->None, PlotPoints -> 30, Axes -> False, Boxed -> False, Lighting-> Automatic}, Background -> Black]
5
Graphics[{EdgeForm[Gray], Nest[{{Darker[Red], Rectangle[{0, -.5}], White, Rectangle[{-1, -.5}]}, Scale[Rotate[#, Pi/14], .95]} &, {}, 70]}],Background->Black]
6
)PolarPlot[ Evaluate[Table[Abs[Sin[t + i]], {i, 0, 2 Pi, 2 Pi/16}]], {t, 0, 2 Pi}, PlotStyle -> Thick, ColorFunction -> Function[{x, y, t, r}, Hue[r]], Axes -> False, RegionFunction -> Function[{x, y, t, r}, r < 0.555], ColorFunctionScaling -> False, PlotPoints -> 20, MaxRecursion -> 3,Background->Black]
7
ParametricPlot3D[{{4 + (3 + Cos[v]) Sin[u], 4 + (3 + Cos[v]) Cos[u], 4 + Sin[v]}, {8 + (3 + Cos[v]) Cos[u], 3 + Sin[v], 4 + (3 + Cos[v]) Sin[u]}}, {u, 0, 2 Pi}, {v, 0, 2 Pi}, PlotStyle -> {Red, Green}, Axes -> False, Boxed -> False, Background -> Black]
8
Plot3D[{x^2 + y^2, -x^2 - y^2}, {x, -2, 2}, {y, -2, 2}, RegionFunction -> Function[{x, y, z}, x^2 + y^2 <= 4], BoxRatios -> Automatic, Axes -> None, Boxed -> False, Background -> Black]
9
Graphics @@ {Table[ Rotate[ Text[ Style["MATHEMATICA", RandomInteger[{4, 20}], Opacity[RandomReal[{.5, .98}]], Hue[RandomReal[]]], RandomReal[{0, 2}, {2}]], RandomReal[{-(Pi/2), Pi/2}]], {20}]}
10
guilloche[{a_, b_, c_, d_, e_, f_}, o : OptionsPattern[]] := PolarPlot[Evaluate[Flatten[{Table[(c + Sin[ a x + d]) + ((b + Sin[b x + e]) - (c + Sin[a x + d])) (f + Sin[a x + n/Pi])/2, {n, 0, 19}]}]], {x, 0, 2 Pi}, o, Axes -> None, Frame -> False, Mesh -> None]; Show[{guilloche[{4, 8, 23, 4.7, 14.8, 1.9}, PlotStyle -> Directive[Opacity[0.5], ColorFunction -> "SandyTerrain"]]}, Background -> LightBlue]
11
ParametricPlot3D[{Cos[t] (3 + r Cos[t/2]), Sin[t] (3 + r Cos[t/2]), r Sin[t/2]}, {r, -1, 1}, {t, 0, 2 Pi}, Mesh -> {5, 10}, PlotStyle -> FaceForm[White, White], Boxed -> False, Axes -> False, Background -> Black]
12
(*12*) SphericalPlot3D[1 + Sin[17 t]/3, {t, 0, Pi}, {u, 0, 5 Pi}, PlotStyle -> Directive[LightGray, Opacity[0.7], Specularity[White, 10]], {Mesh -> None, PlotPoints -> 30, Axes -> False, Boxed -> False, Lighting -> Automatic}, Background -> Black]